Single Amino Acid Mutation Controls Hole Transfer Dynamics in DNA-Methyltransferase HhaI Complexes.

نویسندگان

  • Marina Corbella
  • Alexander A Voityuk
  • Carles Curutchet
چکیده

Different mutagenic effects are generated by DNA oxidation that implies the formation of radical cation states (so-called holes) on purine nucleobases. The interaction of DNA with proteins may protect DNA from oxidative damage owing to hole transfer (HT) from the stack to aromatic amino acids. However, how protein binding affects HT dynamics in DNA is still poorly understood. Here, we report a computational study of HT in DNA complexes with methyltransferase HhaI with the aim of elucidating the molecular factors that explain why long-range DNA HT is inhibited when the glutamine residue inserted in the double helix is mutated into a tryptophan. We combine molecular dynamics, quantum chemistry, and kinetic Monte Carlo simulations and find that protein binding stabilizes the energies of the guanine radical cation states and significantly impacts the corresponding electronic couplings, thus determining the observed behavior, whereas the formation of a tryptophan radical leads to less efficient HT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The DNA binding affinity of HhaI methylase is increased by a single amino acid substitution in the catalytic center.

The HhaI methyltransferase recognizes the sequence GCGC and transfers a methyl group to C5 of the first cytosine residue. All m5C-methyltransferases contain a highly conserved sequence motif called the P-C motif. The cysteine residue of this motif is involved in catalysis by forming a covalent bond with the 6-position of cytosine prior to methyl group transfer. For the EcoRII methyltransferase,...

متن کامل

DNA containing 4'-thio-2'-deoxycytidine inhibits methylation by HhaI methyltransferase.

4'-Thio-2'-deoxycytidine was synthesized as a 5'- protected phosphoramidite compatible with solid phase DNA synthesis. When incorporated as the target cytosine (C*) in the GC*GC recognition sequence for the DNA methyltransferase M. HhaI, methyl transfer was strongly inhibited. In contrast, these same oligonucleotides were normal substrates for the cognate restriction endonuclease R. HhaI and it...

متن کامل

Mutational analysis of conserved residues in HhaI DNA methyltransferase.

HhaI DNA methyltransferase belongs to the C5-cytosine methyltransferase family, which is characterized by the presence of a set of highly conserved amino acids and motifs present in an invariant order. HhaI DNA methyltransferase has been subjected to a lot of biochemical and crystallographic studies. A number of issues, especially the role of the conserved amino acids in the methyltransferase a...

متن کامل

Expression of prokaryotic HhaI DNA methyltransferase is transforming and lethal to NIH 3T3 cells.

In neoplastic cells, levels of DNA methyltransferase activity are often increased, and evidence is accruing to suggest an important role for this event in tumorigenesis. To evaluate this possibility further, and to investigate the contribution of increasing de novo, as opposed to maintenance, DNA methylation in mammalian cells, we expressed the bacterial HhaI methyltransferase in cultured murin...

متن کامل

Solubility engineering of the HhaI methyltransferase.

DNA methylation is involved in epigenetic control of numerous cellular processes in eukaryotes, however, many mechanistic aspects of this phenomenon are not yet understood. A bacterial prototype cytosine-C5 methyltransferase, M.HhaI, serves as a paradigm system for structural and mechanistic studies of biological DNA methylation, but further analysis of the 37 kDa protein is hampered by its ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 18  شماره 

صفحات  -

تاریخ انتشار 2015